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Car§ 

Abstract The unified method for molecular dynamics and density functional theory (MWDF) 
introduced by Car and Paninello is based on zero-temperature density functional theory. We 
have incorporated the finite-temperaNre extension of density functional theory proposed by 
Mermin into a consistent fictitious Lapngian framework. Such an extension of the original 
MDDF method is desirable for two rather different reasons. First this framework provides a 
general method to treat electronic states at finite tempemure or in non-equilibrium excited states. 
Sccond it can alleviate cenain practical problems that arise when KohnSham DF methods in 
general and MDmf in particular are applied to metallic and nearmetallic systems. Our approach 
involves dynamically varying occupation numbers. which is imponant for states near the Fermi 
energy. We show hat the added degrees of freedom of these states can be used to accelerate 
the convergence to the elecvonic ground state. In MD simulations this improved response of the 
electrons also leads to an increase in the r3te of energy transfer from the ionic to the electronic 
degrees of freedom. Out method is illustrated by calculations on crystalline metallic carbon and 
simulations of liquid silicon. 

1. Introduction 

The original unified method for molecular dynamics and density functional theory (MD/DF) 
(Car and Parrinello 1985) has been used with great success on a variety of insulating 
(Hohl and Jones 1992), semiconducting (Car and Parrinello 1988, Hohl and Jones 1991) 
and metallic systems (Calli et a1 1989, Fernando et a1 1989, Qian ef nl 1990, Stich et nl 
1989a). This method is based on the Hohenberg-Kohn-Sham total energy for the ground 
state of a system of electrons (Hohenberg and Kohn 1964, Kohn and Sham 1965). In 
this paper we present a method based on the Mermin extension (Mermin 1965) of the 
Hohenberg-Kohn theorem that treats electronic systems at finite temperature. 

Our first motivation for introducing the Mermin extension is that it offers the proper 
description of the inhomogeneous electron gas at finite temperatures. This would be 
appropriate for applications where the temperature of the electronic system is greater than 
the first excitation energy. Plasmas and liquid metals are typical examples. In principle 
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minimizing the free energy functional with respect to variations in the charge density will 
yield the exact equilibrium charge density. One problematic point in using this formalism 
is the evaluation of the temperature-dependent exchange-correlation functional, ELln] .  
Practical means for doing this involve two approximations: a local density approximation 
(LDA) and an approximate expression for E; for the homogeneous electron gas (Perrot and 
Dharma-wardana 1984, Kanhere et a1 1986). One can therefore envisage three schemes for 
simulating an electronic system at finite temperature: (i) use zero-temperature techniques, 
namely by requiring a ground state (i.e. T = 0) distribution of states and using ELd; (ii) 
maintain the electrons in a thermal distribution of states but continue to use E:='; (iii) 
maintain the electrons in a thermal distribution and use E:. In the context of ionic systems 
scheme (i) corresponds to the Born-Oppenheimer approximation, while schemes (ii) and 
(iii) correspond to the approximation that the electrons equilibrate to a finite temperature 
on time scales small compared to the ionic motion. In view of the approximate knowledge 
that we have of E:c it is not clear which scheme will give more realistic ionic forces for 
use in an actual MD simulation. In this work we will offer an implementation of scheme 
(ii). 

There has in fact been some debate about whether maintaining the electrons in the ground 
state is the physically most relevant procedure in systems with level crossings (Harris 1984, 
Dunlap 1984, Dunlap 1988). In such cases the energy surface for the ions has  a cusp at 
the ionic configuration where the level crossing occurs, resulting in discontinuous forces. 
One motivation for introducing fractional occupation numbers is to eliminate this cusp. In 
principle this can be done by employing any energy functional in which the occupation 
numbers are included variationally (Weinert and Davenport 1992), although the free energy 
functional is the most natural choice. 

There are also a number of technical problems which might be alleviated by the addition 
of extra states. Difficulties in finding the self-consistent solution of the Kohn-Sham (KS) 
equations for metals are well known. Common solution techniques exhibit slow convergence 
when applied to metallic and near-metallic systems using integral occupation of the. ground 
state wavefunctions. Doubly occupying only the lowest N J 2  states in a system of Ne 
electrons can lead to oscillatory behaviour of the highest occupied state. Below we will 
present evidence that iterative techniques also show slow convergence when applied to small 
gap systems. In the language of optimization theory, this is a problem of ill-conditioning. 
since the presence of nearly degenerate states introduces small eigenvalues into the Hessian 
matrix. The inclusion of extra states makes possible the development of algorithms that 
can treat this type of ill-conditioning (Gillan 1989, Arias e tnl  1992). I n  the appendix we 
explain in greater detail the origin of the conditioning problem related to metals and discuss 
specific strategies for overcoming i r f~;  

Total energy calculations on metals are also known to converge slowly with respect to 
the size of the k-point sampling grid. This is due to the complicated nature of the Fermi 
surface. It has been shown that using a smeared Fermi surface can improve the accuracy 
of a given k-point sampling grid (Fu and Ho 1983). The scheme described here using the 
free energy functional is one way of introducing this smearing. 

Another technical problem arises during MD simulations. MDDF simulations rely on the 
efficient thermal decoupling of the ionic and (fictitious) electronic classical subsystems 
(R,) and { $ i t  (Pastore ef al 1991). In systems with small optical gap one observes 
increasing transfer of thermal energy from the ionic to the electronic subsystem with 
decreasing gap size. This energy exchange can become rapid on the MD time scale 
and leads to large deviations of the wavefunctions from the ground state solution and a 
matching cooling of the ionic subsystem. The sum of ionic kinetic and potential energies 
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4 Cl  M I R :  + E [ { @ i ] ,  { R I ] ]  is no longer conserved and the interatomic forces become 
unphysical. Several schemes have been proposed to treat this so-called “metals problem”. A 
Nos6 thermostat can be connected to the ionic system to maintain it at a constant temperature, 
despite energy loss to the electrons (Galli et a1 1989). The excess energy that appears as 
fictitious kinetic energy of the electrons is removed either through periodic quenches (Galli 
et a1 1989). or through another Nos6 thermostat connected to the electronic system (Blochl 
and Paninello 1992). All these modified methods simulate the canonical ensemble and it 
would be very desirable to prevent the thermal equilibration in metallic systems rather than 
cope with it and thus be able to perform microcanonical MDIDF simulations. 

Two processes are responsible for the unwanted energy transfer between the classical 
mechanical subsystems in small gap systems (Pastore et al 1991). (i) instabilities in the 
potential energy surface for the electrons that arise when the changing ionic configuration 
causes a level-crossing to occur and (ii) overlap of the characteristic frequencies of the 
ionic and electronic subsystems ( R I ]  and { @ i ]  when the optical gap closes. Process (ii) is a 
simple consequence of basic classical mechanical rules (Pastore et al 1991). For insulating 
systems it can be dealt with by fine-tuning the relative masses pi and M I  of the electronic 
and ionic subsystems (Pastore et a1 1991, Harris and Hohl 1990). For zero-gap systems, 
however, there is no choice of relative masses that will entirely separate the spectra of the 
two systems. Another possible motivation for introducing the free energy functional is that 
by addressing process (i) alone and removing discontinuities near the Fermi energy part 
of the energy transfer in metallic systems might be prevented. As we shall demonstrate, 
however, the use of fractional occupation numbers in@oduces new low frequency modes in 
the fictitious dynamics of the electrons, resulting in an increase in the energy transfer due 
to process (ii). 

Schemes using fractional occupation numbers are, of course, well-established in LDA-KS 
studies of metallic systems and often involve M-cupations fi according to a Fermi-Duac 
distribution. A very similar scheme was used in the first MDDF studies of a strongly metallic 
system (Fernando eta1 1989, Qian et a1 1990). The authors computed the eigenvalues of the 
occupied states in every MD time step and use them in a fixed Fermi distribution to assign 
occupations to the states. Pederson and Jackson (1991) have proposed using fractional 
occupation numbers in the zero-temperature DF by parametrizing the occupation numbers 
in terms of a Fermi function and then treat the parameter (called a ‘pseudoenergy’) as a 
variational parameter. Gillan (1989) has used a finite-temperature DF as a tool to eliminate 
discontinuities near the Fermi edge; this work introduces the free energy functional and 
treats the occupation numbers directly as variational parameters, but is concerned with 
static properties only and no MD is performed. The use of occupation numbers as variables 
of motion was suggested by Oguchi and Sasaki (1991), but they did not report a calculation 
in which the occupations actually vary dynamically. More recently the importance of 
using a properly variational energy functional was pointed out (Weinert and Davenport 
1992) that includes an additional term in the occupation numbers over the standard 
form. It was shown that a Fermi form of the fi leads to the grand potential of finite- 
temperature thermodynamics. When MD is the goal, forces have to be derived from the 
properly variational functional. An MD study using the Mermin formulation of DF theory 
with a Fermi distribution for the fi was performed by Wentzcovitch er a1 (1992). Not 
surprisingly, the authors found improved energy conservation using consistent expressions 
for force and potential energy. 

In this work we present, apply and analyse a full implementation of the finite-temperature 
density functional within a fictitious Lagrangian framework. We adopt this framework as a 
numerical expedient, although in principle it  could be used to simulate electronic systems at 
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finite temperature. In section 2 we show in detail how dynamically varying occupation 
numbers can be derived from a fictitious Lagrangian framework. Applications of this 
formalism to the electronic structure of liquid silicon and crystalline high-density carbon 
and also to molecular dynamics simulations of liquid silicon are presented in section 3. An 
appendix is also included in which we derive some simple properties of  the total energy 
surface for the general case of fractionally occupied states. 

2. Formalism 

Incorporating fractional occupation numbers into the Hohenberg-Kohn-Sham expression 
for the total energy is straightforward (Jan& 1978): 
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where we require 

O < . f < l  
and work with a fixed integral total number of electrons 

(4) 

Here N is the total number of states included in the calculation. The ground state functional 
used in the original method can be recovered by setting fi = 1 and N = N J 2 .  Calculations 
based on this ground state functional will hereafter be referred to as the srandard method. 
The appropriate thermodynamic potential for finite temperatures is the free energy (Mermin 
1965, Callaway and March 1984): 

F[{+~I> {RI},  {fill = E ~ [ I @ ~ I ,  {R I ] ,  ViH - TS 
= E f [ ( @ i l ,  [RI], (fill + 2T x(A In fi + (1 - fi) - 5 ) ) .  (6) 

Here we have inserted the expression for the entropy of an ideal Fermi gas and are treating 
fi as independent variables. Although we continue to use the zero-temperature form of 
E,,, the development here does not depend on this specific choice. When the free energy 
is minimized with respect to fi one recovers the Fermi function: 

I 

The variables ( f i )  are difficult to use directly as dynamic variables since they must be 
constrained to the range [O,l]. We therefore parametrize each fi with the form of a Fermi 
function: 

where 6~ is chosen to satisfy equation (5) and T is identified with the temperature defined 
in equation (6). The constraint 0 e fi < 1 is now satisfied implicitly. Although other 
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parametrizations could be used here, this particular choice leads to a natural interpretation 
of the ei at the stationary point of the free energy. Note that since E; and e~ only appear 
as differences, they are only defined within an additive constant. Let us next construct a 
fictitious Lagrangian, treating { ~ i ]  as classical degrees of freedom: 

This leads to equations of motion: 

M I R ~  = - V R , F  

where we have introduced the definitions 

The function g(s) exhibits a peak of width - ksT and height 1/2T at E = E p - .  
The gradients of F that appear in the above equations can also be used in optimization 

algorithms such as steepest descent or conjugate gradient to minimize the free energy. At 
the stationary point the gradients vanish giving, for the elecwonic degrees of freedom, 

f i f?@i  = C A i j @ ,  (15) 

~i = Hit +constant. (16) 
Thus at the minimum, the e; are equal to the diagonal matrix elements of the Hamiltonian. 
In the appendix it is shown that these stationary conditions also imply that the states near 
the Fermi energy are exact eigenstates of the Hamiltonian. In this case the Hii are precisely 
the eigenvalues. When the electronic system is in a steady state, the Hellmann-Feynman 
theorem can be applied, guaranteeing that the forces defined in equation (12) are the physical 
forces acting on the ions. 

i 

3. Applications 

3. I .  Electronic minimization 

To illuseate the utility of the free energy formalism, we have performed minimization 
calculations both on simple cubic carbon at very high pressures and on a liquid configuration 
of silicon. These two cases complement each other, since for the boundary conditions used 
in our calculations the crystalline phase of carbon exhibits an exact degeneracy at the Fermi 
level while the chosen configuration of silicon atoms exhibits a near degeneracy. 

For the carbon calculation we have used a 64-atom supercell with lattice constant 
9.03 bok, which corresponds to a pressure near 30 Mbar. In this pressure regime, the 
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simple cubic structure is more stable than the diamond structure. To compute the free 
energy we include 32 extra states beyond the 128 needed for the ground state, and have 
used a broadening temperature of 1000 K. We have used a soft pseudopotential (Troullier 
and Martins 1991) with a cutoff of 40 Rydbergs and the Kleinman-Bylander (Kleinman 
and Bylander 1982) scheme for @eating the non-local mahix elements. Only the r point is 
used in sampling the Brillouin zone. 

For the calculations involving the standard formalism, the qi are relaxed using a 
conjugate gradient algorithm (Stich et a1 1989a). For the calculations involving the free 
energy formalism, the @; were relaxed using the same conjugate gradient algorithm followed 
by one step of an iterative procedure defined by equation (31) in the appendix. The conjugate 
gradient step updates the @i by eliminating components of excited states. The iterative 
procedure updates the @? by mixing states that are within the occupied manifold, the effect 
of which is to bring states which are near the Fermi level closer to being eigenstates. The 
ci degrees of freedom were relaxed using a steepest descent procedure: 
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Since the gradient is proportional to g(c i ) ,  which is an exponentially varying function, it is 
not possible to choose a single step parameter, Aconst, that would quickly converge all the 
ci.  Instead we assign a different value to each: 

Ai = 0.005 * 2T/g(ci). (18) 
In figure 1 we present the convergence of the total energy for the standard method and the 
free energy using the new method. For comparison we have also shown the convergence for 
the insulating diamond structure. It is clear that the efficiency of the standard CG algorithm 
is seriously degraded when an exact degeneracy is present at the Fermi energy. We find a 
substantial improvement in the convergence rate using the new method as compared with 
the standard formalism. 

- new method _ _ _ _  std method 

h - - 
a 
Y r; 

h 0.01 
g 
P 0 - - - - -_________ 
5 0.001 
L .% 0.0001 
d ' le-05 

CG Iterations 
Fwre 1. Comparison of the convergence behaviour of the standard (integrally occupied states) 
method (dashed line) and lhe fractional occupotion method (solid line) when minimizing the 
elecVonic degrees of freedom for a 64-3tom simple cubic mbon sample. Also shown is the 
mnvergence for 64-atom diamond sample using the standard method (doned line). The count of 
iterations for the new method has k e n  multiplied by 1.7 lo account for increased computation 
time. 

Some of the initial @; consisted substantially of excited states of the Hamiltonian. The 
standard algorithm assigns full occupation, f i  = 1, to these states. The plateau seen early 
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on in figure 1 corresponds to the process of projecting out the correct, lower energy states 
that should be included in the occupied manifold. In the new method, these states were 
initially assigned a finite occupation, but the correct states were also included with an initial 
occupation of zero. By varying the occupation numbers rather than the entire state, the new 
method is able to efficiently remove the excited states. 

Once the occupation numbers are approximately correct, both algorithms become limited 
by the process of unmixing the states near the Fermi level. Before the standard method 
reaches the minimum, the states near are not exactly degenerate. The algorithm 
attempts to reach the minimum by projecting out the subspace of unoccupied nearly- 
degenerate states from the subspace of occupied nearly-degenerate states. The near- 
degeneracy of these states makes the calculation badly conditioned, resulting in slow 
convergence. In the new method, the states near are all assigned nearly the same 
occupation, fi = 0.5. In this case the minimum energy will be reached wben the matrix Hij 
is block diagonal, with the three sets of states corresponding to fi = 0,0.5, 1 forming the 
blocks. Since these sets of states are all separated by large gaps, the CG algorithm does not 
encounter the conditioning problem that besets the standard algorithm. In the final stage of 
the calculation we observe that the subspace mixing is responsible for the entire energy drop 
on each step. During this stage mixing of the occupied states results in small corrections to 
the occupation numbers, which then must be included in the Hamiltonian. This procedure 
must be continued until self-consistency is reached. Thus the convergence rate of the new 
method is limited by the efficiency of the mixing algorithm. 

As another test of the algorithm we have performed a steepest descent minimization on 
a @-atom supercell of silicon taken from a liquid simulation. The electronic structure for 
this configuration shows a gap of 0.01 eV at the r point, indicating nearly degenerate states 
at the Fermi level. We have used a standard pseudopotential (Bachelet et af 1982), with the 
Kleinman-Bylander form for the non-local matrix elements. The cutoff for the plane-wave 
basis is 12 Rydbergs, and only the r point is used for Brillouin zone summations. For 
the free energy formalism, we include 10 extra states beyond those needed for the ground 
state, and use a broadening temperature of 2000 K in the Fermi function. Each step in the 
calculation consists of one steepest descent step, one step of the iterative procedure defined 
by equation (31) in the appendix, and one steepest descent step for the 6, parameters, 
equation (17). In addition a unitary transformation is applied to qi once every 50 steps 
that exactly diagonalizes Hij.  The results of the comparison are presented in figure 2. Also 
shown is the convergence rate using the standard technique on a @-atom unit cell in the 
diamond structure. 

We find first of all that the simple steepest descent algorithm used successfully on the 
diamond structure is not efficient for the small gap structure. As the gap of the system 
decreases, the small eigenvalues of the Hessian matrix become even smaller, which leads to 
ill-conditioning. By including extra states with fractional occupations, the ill-conditioning is 
not eliminated (as happened in the high symmetry case above) but it does become tractable. 
Using the steepest descent procedure for effecting rotations within the occupied subspace, 
equation (31). gives an improved convergence as shown in the first 100 steps of figure 2. 
However we find that this procedure alone eventually leads to a convergence rate essentially 
identical to that of the standard method. We believe that the explanation for this is that 
initially the occupied states are very far from being eigenstates of the Hamiltonian and so 
the steepest descent procedure applied to this very non-linear problem is not efficient. To 
quickly move the wavefunctions into the vicinity of the minimum we have performed an 
exact diagonalization of Hij on iteration number 55. After an initial increase in energy (for 
reasons discussed in the appendix) we see a substantial drop in energy followed by improved 
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Figure 2 Comparison of the convergence behaviour of the standard (dashed line) method and 
the new method (solid line) when minimizing the electronic degrees of freedom for a 64-aom 
disordered silicon sample. Also shown is the convergence of the standard method applied to the 
64-atom cell of silicon in the diamond stmctm (doned line), The count of iterations for the 
new method has been multiplied by 1.8 to account for increased computation time. 

convergence. We find that one diagonalization every 50 steps is sufficient to maintain a 
rapid rate of convergence. 

3.2. Molecular dymmics simulation 

We have also performed molecular dynamics simulations on liquid silicon using the new 
formalism. Special attention must be given to the integration of the forces acting on the 
Qi and E; degrees of freedom because they depend linearly on the functions f ( t )  and g ( c ) .  
The first difficulty is that, since the forces vary exponentially, there is no single mass, fiEons, 
or QmnSl. that would be appropriate for all i. This is basically a conditioning problem which 
we can overcome in the same manner as used in the minimization calculation, namely by 
using state-dependent masses: 

(19) 

(20) 
where Ti and zi are t y p i d  values expected during the simulation. We have chosen these 
equal to the values of f, and gi at the start of the simulation. Another more serious difficulty 
can arise during the course of the simulation: it i s  possible for a state with an initially small 
occupation number to evolve into a state with a significantly larger occupation. This means 
that a large force (proportional to the current value of the occupation number) will be acting 
on a small mass (assigned according to the initial value of the occupation), causing the 
Verlet algorifhm to become unstable. We @eat this instability by monitoring f,(t)/f, (0) 
during the simulation. When this ratio becomes greater than 3.0 we alter the masses of the 
corresponding qi and q parameter to be commensurate with the current values of f, and 
gi, respectively. Strictly speaking this procedure is a violation of Lagrangian dynamics. 
However we find that the intervention is small and infrequently needed. In the simulation 
described here, only 6 alterations to individual masses were needed during the course of 
1500 time steps. 

The time step used is 5.5 au. The initial velocities, & and &, are determined by 
performing quenches at the first two atomic positions. The iterative method of Ryckaert et 
a1 (1977) is used to maintain the holonomic constraints of orthonormality. Figure 3 shows 

f i i  = 300 au *Ti 
Qi = 10000 au * 2, /2T 
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the timeevolution of some of the eigenvalues, ei, of the subspace Hamiltonian, H , j ,  and also 
the time evolution of some of the diagonal elements of the subspace Hamiltonian, H i ; .  A 
subspace diagonalization is performed at time f = 0, so initially H;i = e;. During the course 
of the simulation we observe two kinds of behaviour. States far from E p e r ~  (not shown), 
which have equal occupation numbers, tend to mix substantially. This has no effect on the 
total energy or forces since this mixing is a symmetry of the system. States near EF- 
undergo a lesser amount of mixing. This mixing, however, is not a symmetry of the system 
and does affect the calculated energy and forces. Were these mixing modes adiabaticdly 
decoupled from the ionic system, we could invoke averaging arguments to claim that the 
resulting ionic dynamics would closely approximate the exact Born-Oppenheimer dynamics. 
In the present simulation, however, the electronic and ionic systems are coupled, so that 
the quality of the forces deteriorates as the simulation proceeds. Figure 4 shows the time 
evolution of the E ;  parameter. As indicated by the equation of motion, E ;  tends to follow 
the corresponding value of Hi;. Figure 4 also shows the time evolution of the occupation 
number, fi. 

In parallel to the above, we have performed another simulation using only 128 states 
with equal (integral) occupations to compare with the above simulation. In pariicular the 
rate of fictitious kinetic energy transfer to the electronic wavefunctions q, was examined. 
The time development of the fictitious kinetic energy of the two simulations is shown in 
figure 5. We find that the energy gain is faster when using the fractional occupation method. 
This will be further discussed below. 

0.12 

z- 0.11 

h i -  
0.10 

v G 

0.09 

0.12 

0.11 

E -  

h 

2 
2 0.10 
- 

0.09 

Time Step 
Figure 3. MD simulation for liquid silicon (see texl). Time evolution of the eigenvalues. e;. of 
H;j and the diagonal matrix elements, H!i .  Arrows indicate the average value of E-,. 
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Figure 4. MD simulation for liquid Silicon (see text). lime evolulion of the parameten c, and 
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Figure 5. Time evolution of total kinetic energy of lhe electronic degrees of freedom during 
the liquid Si simulation. Solid line is the new method. dashed line the standard method with 
integrally-occupied stltes. 

We have also examined the fictitious kinetic energy of the individual electronic states 
at a given time during the simulation. For the case of equal occupation numbers we see 
a uniform distribution of the kinetic energy among the states in the simulation. This can 
be understood as follows. At the beginning of the simulation, a sub-space diagonalization 
was performed to guarantee that the states were all exact eigenstates of the Hamiltonian. 
As the simulation progresses, however, there is no restoring force to maintain the states as 
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eigenstates of the instantaneous Hamiltonian, and in fact they consist of arbitrary unitary 
transformation of the eigenstates. The response of the electrons to resonant excitation from 
the ions is dominated by the response of the eigenstates near the Fermi level. Since the 
simulation states contain arbiuaq linear combinations of these eigenstates, we expect a 
uniform response. 

gain a much greater 
amount of kinetic energy than states far from EF-. This is a result of the fact that the 
total energy is no longer invariant with respect to unitary transformations of the states. The 
total energy is minimized when the states are exact eigenstates which implies that during a 
simulation they tend to oscillate (in the space of unitary transformations) around the exact 
eigenstates. In particular, the states near the Fermi level tend to remain near to eigenstates. 
Since these are also the states that dominate the electronic response to the ionic motion, we 
expect these states to gain a greater share of the kinetic energy. 

Since the fractional occupation method does not suffer from the level switching 
instability present in the standard method, the increased rate of energy transfer seen in the 
new method must be explained in terms of the resonance mechanism mentioned in section 1. 
We would expect an increase in energy transfer if either the efficiency of each resonant mode 
increases or if the density of resonant modes increases. To investigate this process we have 
performed the following simulation on the qj only, keeping the ions fixed. We take the 
instantaneous values of the @i and of the ionic coordinates from step number 700 in the 
simulation discussed above. The pj are then allowed to evolve dynamically starting with 
initial velocities of zero. The ions are held fixed during this simulation. After equilibrating 
the system for 300 steps, we begin recording the velocity-velocity autocorrelation function: 

For the case of fractional occupations we find that states near 

By taking the Fourier transform of this quantity we are able to obtain the power spectrum 
of the vibrations that are excited during the evolution of the electronic system. A parallel 
simulation is also performed using the new method. In this case we also fix the ci degrees 
of freedom. Although the ionic positions were also taken from step number 700 of the 
simulation, the configuration is not exactly the same as above due to differences in the 
dynamics generated by the two methods. Our results are shown in figure 6. As compared 
to the standard calculation, the new calculation shows a major shift of spectral power to 
lower frequencies. 

The origin of this shift can be traced back to the introduction of fractional occupation 
numbers in the total energy. Equation (29) in the appendix gives the characteristic 
frequencies that would be observed in a non-self-consistent simulation with small 
displacements. We can use this result to qualitatively demonstrate the origin of the shift in 
spectral power. For each of the two types of simulation (standard formalism and free energy 
formalism) we have taken the values of fi and ej from the fixed-ion simulation discussed 
above. These values were then used in equation (29) to generate a list of characteristic 
frequencies. A histogram was then constructed from this list to give a classical density of 
states, which is shown in figure 7. We find that the introduction of fractional occupation 
numbers results in a dramatic shift of the frequencies towards the lower end of the spectrum. 
The presence of additional modes at lower frequencies offers an explanation for the results 
of the previous simulations. Assuming that the additional modes are excited to an equal 
extent, we would expect to see a greater spectral weight at these frequencies. In fact they 
are not excited equally, as can be seen by comparing figures 6 and 7. The presence of a 
greater number of modes in the range of the phonon modes of liquid silicon (- 2-20 THz) 
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Figure 6. Classical power spechm of electronic degrees of freedom for fixed ions using the 
new method (solid line) and the standard method (dashed line). The positions of the ions and 
the initial values for the C ~ G  were from the previous simulation. 

would also result in a greater overall energy transfer from the ionic system to the electronic 
system. 
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Figure 7. Density of states for fictitious electronic degrees of freedom as estimated by equation 
(29) of the appendix. Solid line indicates fraaional occupation method, dashed line indicates 
integral occupation method. 

4. Conclusions 

We have shown how to incorporate finite-temperature density functional theory into a 
fictitious Lagrangian framework. This new method provides a means of introducing a 
thermal distribution of states into an MDDF calculation, which is useful for simulations of 
thermal electronic systems such as liquid metals and plasmas. 

We have investigated the problem of minimizing the electronic free energy, F [ ( @ i } ,  [A) ]  
with respect to the electronic degrees of freedom, @i and in small gap systems. 111- 
conditioning in these calculations can be traced to unitary transformation among states near 
the Fermi level which only weakly affect the total energy. By including states above the 
Fermi level in the calculation we are able to attack the problem directly. We have applied 
this technique to a system with high symmetry and exact degeneracies (metallic carbon) and 
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also to a disordered system with near degeneracies (liquid silicon). In the high-symmetry 
case we find that the new method quickly finds all the degenerate states and assigns an 
appropriate occupation number to them. At this point states with different occupation 
number become separated by wide energy gaps, effectively eliminating the conditioning 
problem and resulting in rapid convergence, as shown in figure 1. On the other hand, 
in a disordered system with near accidental degeneracies merely assigning appropriate 
occupation numbers does not remove the conditioning problem. In this case we find that 
the convergence rate is determined by the efficiency of the technique used to obtain exact 
eigenstates of the states near the Fermi level. We have discussed several strategies for 
treating this and demonstrate that the convergence rate of the calculation can be improved, 
as illustrated in figure 2. 

A full MD simulation on liquid silicon was carried out treating both the ionic and 
electronic systems dynamically. We have compared the new method (having dynamically 
varying occupation numbers) with the standard method (having fixed integral occupation 
numbers). For the particular case of liquid silicon, shown in figure 5 ,  we find that the rate 
of energy transfer from the ionic to the electronic system is approximately doubled when 
the new method is used. We have analysed this behaviour and find that the inwoduction of 
fractional occupation numbers causes new low-energy modes to appear in the vibrational 
spectrum of the electronic degrees of freedom. These new modes provide additional 
coupling between the two systems, resulting in an increase in energy transfer. This rate 
of transfer can be handled by the same procedures used in current calculations on metals 
using thermostats to keep the ion and electron temperatures constant (Blochl and Parrinello 
1992). Only future tests incorporating such thermostats will determine whether or not the 
improved treatment of the electrons in metals using the fractional occupation method will 
offset any errors introduced by the thermostat method. 
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Appendix. The role of unitary transformations 

In this appendix we will explain how the total energy, E f [ [ $ j ) ] ,  depends on unitary 
transformations of the occupied states and what this implies for both minimization and 
dynamical calculations. 

The first step in this analysis is to express the wavefunctions in terms of another set of 
orthonormal functions: 

where M is the size of the Hilbert space. For notational convenience we will also allow the 
index i to run from 1 to M ,  so that the number of states is equal to the size of the basis. 
In actual calculations the number of bands, N, is usually smaller than M .  For most of the 
results below, the case of i = 1, N where N < M can be recovered by setting fi = 0 for 
N i i < M .  The constraint that (qi} be orthonormal now becomes the requirement that 
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the matrix orij be unitary. The first simplification that we will make is that the potential 
energy will be treated non-self-consistently: 

M P Grumbach et al 

where Vea(r) is fixed. We will also assume that the values of orij for i  # j are small. This 
simplifies the analysis in two ways. First, the total energy can then be written to second 
order in or as 

M M .U +c [fi(Y;(YijHh, - fi4'iui,a;kHij]+ Ob'3). (24) 
i=l j # i  k # i . j  

The set of variable ( o r i j )  is constrained by the condition that the matrix 01 be unitary. In 
principle the constrained first derivative could be found by evaluating the Jacobian, This 
can be avoided by noting that for small values of (ai,] the equations of constraint simplify 
to: 

ai; = 1 + U(lY2) (25) 
(26) cY;j = -or;j + U(or2). 

This is the second reason for considering only small values of [ o r j j ] ,  since it allows us to 
treat the set of N ( N  - l)/2 variables (orif, i c j ]  as the independent degrees of freedom. 

If we specify that [&] for i  = 1. M be the exact eigenvectors of A, so that Hi, =e&, 
then the energy can be written: 

(27) 
I M  

E ' [ ~ w ~ I I =  E ~ I I + ~ I I  + - c~fi - f i)(ej  - e ; ) a $ ~ j .  
2 i.j=1 

We first note that in order for a minimum to exist, we must have (fj - h ) ( e j  - e ; )  2 0 for 
all i, j .  Let us assume for the moment that this is true. 

For the case of equal occupation numbers (5 = f,) the terms that mix states i and j 
vanish, indicating a symmetry of the system. For the case of unequal occupation numbers 
(fi # f i  for i # j ) ,  then the total energy is minimized when orjj = & j .  i.e. when the states, 
qi, are equal to the eigenstates, di. In the case where two states of unequal occupation 
are separated by a small energy gap, the second derivative, a2E/a&, becomes relatively 
small. This is the source of the conditioning problems in both the standard and free energy 
methods of optimization. 

A simple fictitious Lagrangian can be introduced in order to examine dynamical 
quantities: 

By applying the change of variables, (22). to the fictitious kinetic energy, we can write the 
Lagrangian solely in terms of the ( a i j ] ,  from which we can the obtain the characteristic 
frequencies of vibration: 

(29) @?. = (fi - fi)(ej -ei)/(Pi + P j )  for i, j < N 
for i < N, j > N .  If I f i ( e j  - ei)/Pi 
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Now we return to the energy expression in equation (24) and specify that @j be a set 
of orthonormal functions, but not necessarily eigenfunctions. In this general case the first 
derivative of the energy is 

This result can be used to formulate an iterative procedure for minimizing the total energy 
by mixing states within the occupied subspace. Let @j for i = 1, N be the current set of 
wavefunctions. Since we are using the current set of wavefunctions as the basis, the current 
values of are ak = &,. A simple steepest descent algorithm can then be used to find 
a set a& closer to the minimum: 

A simple preconditioned steepest descent algorithm, which uses second derivative 
information, can also be devised: 

These algorithms provide an iterative technique for finding the actual eigenstates of states 
with differing occupation. Thus the inclusion of extra states allows us to directly attack the 
conditioning problem by applying a different treatment to the soft modes of the system. 

Note that during the course of an iterative minimization calculation the condition for 
the existence of a minimum, (fi - f i ) ( e j  - ei)  > 0, may not always be satisfied. When 
this is the case, applying a unitary transformation that exactly diagonalizes H would result 
in an increase in the energy. The iterative techniques have the advantage that we can set 
aij = 0 whenever the existence criteria is not satisfied (Gillan 1989). 

The preconditioned algorithm is essentially equivalent to the algorithm proposed by 
Gillan (Gillan 1989). We have observed that the preconditioned version is not stable in the 
sense that it does not always lower the energy. This may be an indication that the Hessian 
matrix is not diagonally dominant, in which case simple preconditioning is not applicable. 
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